This monitor has been designed for real time low-level detection of tritium in water in the industrial environment of nuclear power plants. Low MDA, reliability, ruggedness (suitable for HWR, PWR, BWR) and simplicity of operation is what sets this monitor apart from laboratory type of the equipment. The initial purpose of the Model 1925 series was to detect the leak of heavy water in nuclear power plants that utilize CANDU reactors; however, it can be used for other purposes such as monitoring changes in tritium content of ground water, drinking water, and waste water.

MINIMUM DETECTABLE ACTIVITY

The unit detects tritium decay by extracting T₂ and H₂ from the water, then making sensitive measurement with matched gas flow proportional counters. To minimize cosmic and gamma radiation effects, optional ½” lead shielding provide for low background noise. MDA is 3.7kBq/L.

RESPONSE TIME

The unit is equipped with up to 6 inputs for sampling 6 individual lines. The response time from when sample enters the system until the unit starts to respond is 3 minutes and in 9 minutes the full value of tritium concentration in the sample is displayed on the screen. Each sample line is sampled for 10 minutes so that the effect of residual activity from the previous line is minimized.

INTEGRATED COMPUTER, DISPLAY, AND SOFTWARE

Equipped with a fully-integrated computer, this smart instrument logs all data points on an insertable USB flash drive. Data communication to external programs is available via TCP/IP. Standard data output is USB and RJ-45 with an optional 4-20 mA. Alarm relay connections are included on the back panel.

Custom software allows the user to adjust several of the measurement parameters, such as: units of measurement, alarm limits, flow rate for totalizing, among others.

The Overhoff Model 1925-PR Heavy Water Leak Detector utilizes cutting-edge proportional counting technology to provide a smart instrument with unequalled performance in sensitivity, stability, ease of operation, and data acquisition/analysis.
PRESSURE REGULATING EQUIPMENT

Pressure of input sample streams can be up to 103 kPa. This pressure is immediately reduced to 2-3psi via Pressure Regulating Valves (PRV). Each PRV is associated with Pressure Relieve Valve set to open at 100 kPa, therefore, the pressure in the system can never be more than 100 kPa, which makes it safe to handle. This also makes the instrument Class 6 Nuclear Device.

FULLY INTEGRATED PACKAGE

Model 1925 -PR is a completely self-contained instrument for real time observation of tritium concentration in water. The instrument is mounted inside of the 200cm tall steel enclosure with reinforced anchoring feet and locked access.

P-10 gas (90% Argon, 10% Methane, non-combustible) cylinder is connected to the unit externally. This quantity is sufficient for 60 days of continuous operation.

The main subassemblies are:
1. Sample water input lines
2. External cooling loop in case of hot samples
3. PRV and RV system with manifolds
4. Water purification system (oil-in-water and micron filter)
5. Sample water pump
6. Detection module
7. Data acquisition electronics module
8. System control module
9. Waste water output line, RV output line and sample bypass output lines
10. Pre-filter

PLC CONTROL

Sampling of input lines and control of alarms and pumps is done by PLC unit placed inside of the System Control Module. There is an alarm provided in case of PLC failure as well as manual override so that the operation can be continued manually until PLC is replaced. Manual operation is a backup system; the unit normally operates in automatic mode.

ROUTINE MAINTENANCE

Scheduled maintenance of consumables is required. P-10 gas cylinder needs to be replenished every 2 months and sample water filters need to be replaced. Also, periodic check of the efficiency and background is recommended if there is a possibility of increased background contamination and due to standard life cycle of electronics components.
ANNUAL INSPECTION AND SERVICE

It is recommended that the instrument be inspected and serviced on an annual basis to ensure continuing trouble free operation. All components of the instrument should be inspected and instrument re-calibrated.

REPAIR

Equipment failures of a minor nature can be repaired under local supervision by the operator of the equipment. When necessary, the manufacturer (Overhoff Technology Corporation (OTC)), or its agents can dispatch service personnel for quick remediate action.

DOCUMENTATION

All OTC equipment is accompanied by complete documentation, which includes the following:

1. User and Maintenance Manual that contains:
 a. Theory of operation
 b. Installation instructions
 c. Operation instructions
 d. Calibration procedure
 e. Suggested maintenance
 f. Repair instructions
 g. Drawings, diagrams and schematics

Training will be provided by the manufacturer, at this factory, free of charge. Assistance with commissioning is also available by the manufacturer (OTC).

ADVANTAGES OF PROPORTIONAL COUNTING SYSTEM VERSUS LIQUID SCINTILLATION

Until recently, the only detectors capable of measuring very low levels of tritium in water were Liquid Scintillation Counting (LSC) based. However, the LSC approach has some obvious disadvantages, such as: the LSC fluid must be constantly refilled at a significant cost in labor, money, and space; LSC fluid is also hazardous material and mixing with tritium results in 'liquid mixed waste,' which must be carefully stored, transported and disposed of.

By utilizing proportional counting technology, the user only has to acquire a compact standard steel tank of proportional gas, which will last for more than a month and is available from a variety of suppliers. The P-10 counting gas is 90% Argon and 10% Methane, and is not toxic or combustible. Measurement via this method achieves same or better low-end sensitivity, without having to deal with LSC fluid and waste.
MODEL 1925-PR TECHNICAL SPECIFICATION

MEASUREMENT RANGE: 3.7kBq/L – 130kBq/L

RESOLUTION (SENSITIVITY): 1.0kBq/L

MINIMUM DETECTABLE LIMIT: 3.7kBq/L at confidence level of 95%

DISPLAY: LCD Color Touch Screen; units of display user-settable (i.e., pCi/cc, MBq/m³, MPCa, µCi/m³)

RESPONSE RATE: 3 min beginning of the response, 9 min full value displayed

MEASUREMENT METHOD: Gas flow proportional counters

PROPORTIONAL COUNTERS: Dual copper clad acrylic counter tubes, 2 liter active volume, 2.5 liter wetted volume, 0.001 inch tungsten collector anode

COUNTER GAS: P-10 or “MAGIC” gas for high performance
Flow rate 250 cc/min, typical

MEASUREMENT ALARM SET POINT: Can be manually adjusted

DATA RECORDING/OUTPUT: Insertable USB flash drive; Data communication via TCP/IP.
Standard data output is USB & RJ-45

SAMPLING/MIXING SYSTEM: See diagram 1 on page 5.

WASTE MANAGEMENT: Unused water output lines with Swagelok® fittings are provided, user to provide recycling system or waste collection system.

TEMPERATURE: 0°C to 50°C

HUMIDITY: 0 to 95 % R. H.

SEISMIC: Withstands modest shock

ELECTRICAL: Power 110/230VAC, 5A

MECHANICAL: Self contained, mounted on a steel frame with lifting eyes for easy transport.

DIMENSIONS: 31.5in x 23.6in x 84.0in (800mm x 600mm x 2133mm)

WEIGHT: 1100 lb (500 kg)
Diagram 1: Model 1925-PR Flow Path